FAMILIES OF SUPERELLIPTIC JACOBIANS AND ISOGENY CLASSES

YURI G. ZARHIN

Let K be a field of algebraic functions in one variable over the field \mathbf{C} of complex numbers, i.e., K is finitely generated and of degree of transcendency 1 over \mathbf{C} . We write \overline{K} for an algebraic closure of K. Let X be an abelian variety of positive dimension over K.

Definition 0.1. We say that X is completely non-isotrivial if for every abelian variety W over C there are no non-zero homomorphisms between X and W over \overline{K} .

Definition 0.2. Let ℓ be a prime number. We write $\operatorname{Isog}(X, K, \ell)$ for the set of K-isomorphism classes of abelian varieties Y over K such that there exists an ℓ -isogeny $Y \to X$ that is defined over K. We write $\operatorname{Isog}_1(X, K, \ell)$ for the subset of $\operatorname{Isog}(X, K, \ell)$ that consists of all (isomorphism) classes of Y with a principal polarization defined over K.

Theorem 0.3. Suppose that $K = \mathbf{C}(t)$ is the field of rational functions in one variable. Let $f(x) \in \mathbf{C}(t)[x]$ be an irreducible polynomial of degree $n \ge 3$, whose Galois group acts doubly transitively on the set of roots of f(x). Let p be a prime that does not divide n, let r be a positive integer and $q = p^r$. If (n, p) = (3, 2) then we assume additionally that r = 1, q = p = 2. let C_f be the smooth projective model of the affine curve $y^q = f(x)$ over $\mathbf{C}(t)$ and let $J(C_f)$ be the jacobian of C_f .

Then $J(C_f)$ is an abelian variety over $\mathbf{C}(t)$ that is completely non-isotrivial.

Example 0.4. It is known that the polynomial $f(x) = x^n - x - t$ is irreducible over $\mathbf{C}(t)$ and has Galois group \mathbf{S}_n , which is doubly transitive.

Theorem 0.5. In notations and assumptions of Theorem 0.3 assume that

$$n = 3, p > 2, r = 1, q = p.$$

Then there exists a positive integer d and a degree d cyclic extension $L/\mathbf{C}(t)$ that enjoy the following properties:

- (i) d divides 2p.
- (ii) The field extension $L/\mathbf{C}(t)$ is unramified outside the places of bad reduction of $J(C_f)$.
- (iii) The set $\text{Isog}(J(C_f), L, \ell)$ is infinite for all but finitely many primes ℓ .
- (iv) The set $\text{Isog}_1(J(C_f) \times J(C_f), L, \ell)$ is infinite for all but finitely many primes ℓ with $4 \mid (\ell 1)$.

References

 Yu. G. Zarhin, A. N. Parshin, *Finiteness problems in Diophantine geometry*. Amer. Math. Soc. Transl. (2) **143** (1989), 35–102.

YURI G. ZARHIN

- [2] J. de Jong and R. Noot, Jacobians with complex multiplications. In: Arithmetic algebraic geometry (eds. G. van der Geer, F. Oort and J. Steenbrink). Progress in Math., vol. 89 (Birkhäuser, 1991), pp. 177–192. [3] Yu. G. Zarhin, Isogeny classes of abelian varieties over function fields.
- arXiv:math.AG/0504523 .

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PA 16802, USA

MATHEMATICAL SCIENCES RESEARCH INSTITUTE, BERKELEY, CA 94720, USA $E\text{-}mail\ address: \texttt{zarhinQmath.psu.edu}$

 $\mathbf{2}$